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structure due to this effect. Nevertheless, our calcula­
tions do give considerable improvement over those of 
the Hartree-Fock functions and show that the energy-
corrections calculated from a simple correlation factor 
are of the right magnitude to account for the difference 
between the experimental multiplet spacings with that 
predicted by the Hartree-Fock theory. 

I. INTRODUCTION 

THE purpose of this paper is to present the results 
of some investigations concerning the steady 

diamagnetic susceptibility of "small" systems of elec­
trons. A "small" system is denned as one whose charac­
teristic linear dimensions (L) are very much less than 
the average radii (Rc) of the classical electronic orbits1 

in an applied dc magnetic field. In treating this problem, 
it is customary to idealize2 the real physical situation to 
that of a free-electron gas confined to a box. The surface 
of the box is then represented by a simple, and ana­
lytically tractable, potential barrier. The use of such a 
model seems justifiable in view of the fact that the very 
existence and order of magnitude of size corrections for 
small systems have not been definitely established. 
These are, indeed, the subjects of the present paper. 

* This work was supported in part by the U. S. Air Force Office 
of Scientific Research, Grant No. AF 196-63. 

f Present address: RCA Laboratories, Princeton, New Jersey. 
The author would like to thank RCA Laboratories for the oppor­
tunity of completing this work. 

1 Specifically, if Rc is taken as the classical orbit radius corre­
sponding to the mean-electron energy, (E)=£ or kT, according to 
whether the electron gas is taken to be degenerate or nondegener-
ate, respectively, then L^iRc=(mc/eH)(2(E)/m)lf2. As will be 
seen later, this is simultaneously the domain of validity for treating 
the magnetic-field proportional terms in the electronic Hamil-
tonian as a small perturbation. 

2 In so doing, one neglects the periodic potential, collision of the 
electrons with phonons and impurities, and the true scattering 
properties of the surface. Also, electron spin is neglected 
throughout. 
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The treatments to which the present work has refer­
ence, are those of Dingle,3 Part IV, and Ham.4 Dingle 
considers a cylindrical sample, for which he predicts an 
enhancement of the Landau diamagnetic susceptibility 
depending on the ratio of the radius of the cylinder to 
the electron wavelength at the Fermi energy. Ham does 
not specifically treat a "small" system. Rather, using a 
modification of the WKB approximation, he calculates 
surface corrections to "large" (LS>RC) systems, the sign 
and magnitude of which he finds extremely sensitive to 
the form of the surface potential. 

The present paper began with an investigation of such 
effects by means of a detailed examination of a very 
simple geometrical model: namely, a plane-parallel 
slab, small (in the previously defined sense) in one 
dimension (at the boundaries of which the wave func­
tion is assumed to vanish), and satisfying periodic 
boundary conditions along the other two transverse 
dimensions. Such a geometry had been considered earlier 
by Papapetrou5 who obtained just the Landau result6 

for a degenerate electron gas. In addition to confirming 
his calculation by an alternate procedure and obtaining 

3R. B. Dingle, Proc. Roy. Soc. (London) A212, 47 (1952). 
4 F . S. Ham, Phys. Rev. 92, 1113 (1953). 
6 A. Papapetrou, Z. Physik 107,387 (1937). It should be pointed 

out that the present paper overlaps this reference to some extent. 
The addition contributions of the present work, however, are: (a) 
the calculation of the Landau susceptibility for Boltzmann statis­
tics (not considered by Papapetrou); (b) the explicit demonstra-

P H Y S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 2A 20 A P R I L 1 9 6 4 

Question of Size Corrections to the Steady Diamagnetic 
Susceptibility of Small Systems* 

LIONEL FRIEDMAN! 

University of Pittsburgh, Pittsburgh, Pennsylvania 
(Received 22 October 1963; revised manuscript received 30 December 1963) 

The order of magnitude of the (orbital) diamagnetic susceptibility of a free-electron gas is investigated for 
the case of "small" systems. A small system is, by definition, one whose characteristic linear dimensions are 
very much less than the radii of the average classical electronic orbits in an applied dc magnetic field. For 
the case of plane-slab geometry, exactly the Landau susceptibility (i.e., no size effect) is obtained for 
Maxwell-Boltzmann statistics. Furthermore, on the basis of the latter calculation, it is explicitly demon­
strated that the use of the WKB approximation leads to a spurious size effect, suggesting that this (or 
equivalent) approximations may be responsible for size corrections found by other authors. For the de­
generate case, the Landau result is also obtained, to within a numerical factor. Finally, no size correction is 
obtained in the small size limit for an electron gas confined by a harmonic potential well; this further sug­
gests that the Landau result is independent of the choice of boundary potential. 



S U S C E P T I B I L I T Y O F S M A L L S Y S T E M S A33lf 

a numerical correction to his result, we also obtain the 
Landau result for Boltzmann statistics. Moreover, by a 
careful examination of the latter calculation, it was 
found that the use of WKB energies in lieu of the correct 
energies found from perturbation theory, leads to a 
spurious^ larger than normal, result. Thus, the WKB 
approximation is not valid for this case in spite of the 
fact that it applies to the "vast majority" of states. This 
result only emphasizes the well-known fact that, since 
diamagnetism is entirely a quantum effect and arises 
from a delicate cancellation of large terms, approxima­
tions valid for large quantum numbers may often yield 
spurious results. 

To examine the sensitivity of the susceptibility to the 
choice of boundary potential, a calculation was made for 
a harmonic potential well, V (y) = %mQ?y2, which serves as 
a convenient prototype of a potential barrier which rises 
slowly, in contrast to the infinite potential well con­
sidered previously. While recognizing that this potential 
is perhaps somewhat special (as will be noted in the text, 
the form of the magnetic-field perturbation agrees with 
that of the well), we nevertheless consider this case in­
structive. Here, also, the Landau result was found in the 
limit of a small system (as defined in this case by ftooc 

= efiH/mc<^hti). Hence, for the cases investigated, aside 
from the above-mentioned numerical correction to the 
Landau result for degenerate statistics, there is no 
indication of size and surface corrections of the types 
discussed in Refs. 3 and 4, which depend explicitly on 
the sample dimensions and/or the magnetic-field 
strength. 

The program of the present paper is as follows. In 
Sec. II, the problem is formulated, and the magnetic-
field-dependent corrections to the electronic energies are 
found by standard time-independent perturbation 
theory. In Appendix A, the series required for the 
evaluation of the second-order energy correction is 
summed by a contour integral technique. Using these 

tion of the inadequacy of the WKB approximation based on cal­
culation (a); (c) an alternate and independent calculation of the 
magnetic-field-dependent energies (specifically, the second-order 
energy corrections). 

6 It should be pointed out that the use of periodic boundary 
conditions along the two long dimensions of the slab, has been cited 
by Dingle as being responsible for the Landau result obtained by 
Papapetrou. Such a criticism does not seem justified in view of the 
fact Papapetrou himself examined this question in a later paper 
[Z. Physik 112, 587 (1939)]. Using standing waves along all three 
directions, he found that for the vast majority of possible systems 
(i.e., of LXt Ly, Lz), the standard result was reobtained. The only 
exceptions to this occurred for those cases where the ratio of the 
dimensions of the box in the plane normal to the applied magnetic 
field was a rational number. This geometrical feature implies a 
twofold degeneracy in the unperturbed standing wave states 
which, in turn, leads to a larger than normal susceptibility. How­
ever, in the opinion of the present author, such cases cannot be 
properly interpreted as implying a dependence of the diamagnetic 
susceptibility on the sample dimensions, since the smallest, 
ordinarily negligible, perturbations (impurities, the periodic 
potential, etc.) would be bound to lift such degeneracies, in view 
of the infinitesimal level spacing (~1/Z) . Hence, the use of 
periodic boundary conditions along other than the thin dimension 
seems a justifiable model for small systems, and is used in the 
present paper. 

results, the susceptibility calculations are given in 
Sec. I l l for both Maxwell-Boltzmann and Fermi-Dirac 
statistics. This is contrasted with the spurious size-
dependent result found on the basis of the WKB 
energies. Finally, the case of the harmonic well potential 
is treated in Sec. IV, again with the Landau result. 

II. ENERGY CALCULATIONS 

We consider an infinite potential well defined by 

V(y)=0, \y\<Ly/2, 

V{y)=™, \y\>Lv/2, 
(1.1) 

with no dependence on % and z. Then; choosing a gauge 
A= (—Hy, 0, 0), where H=HZ is the applied dc mag­
netic field, the electronic Hamiltonian is 

1 / eHy\> p2 p2 

K = —(px+ ) +—+—+V(y). 
2m\ c / 2m 2m 

The wave equation obeyed by the total wave function 
ty(x,y,z) is 

3C^ (x,y,z) = E^ (x,y,z). 

Following the standard procedure of setting ty(x,y,z) 
— eiVcxx+kzz)x(y^ o n e obtains the wave equation 
obeyed by x(y)i namely, 

d2
x(y) 2m \ e2H2y2 eH ) 

+—\Ey hkxy\x(y) = 0. (1.2) 
dy2 h2 i 2mc2 mc J 

Following Papapetrou5 and Dingle,3 the magnetic-field 
terms in (1.2) are treated as small perturbations.7 The 
zeroth-order (H=0) eigenstates and energies are just 
standing wave solutions: 

x(y) = A s i n |>wy /L j ; n=\, 2, 3, • • • 

= B co${2Tr(ri+%)y/Lv']\ »' = 0, 1, 2, • 

h2
 /2TT V h2

 /2TT V 
En(0) = — ( — » ) , E»'<0) = — ( — ( w ' + i ) ) 

2m\Ly / 2m\Ly / 

(1-3) 

The first-order energy correction is simply the expec­
tation value of the ^-proportional term in (1.2). For 
the odd solutions, for example, one gets 

e2H2 

En^ = A 
2mc2 /

Ly[2 

dyy2 sin2| 
-Ly/2 

e2H2L 

2 \ 2TT2WV 24=mc2 

7 As pointed out by Dingle, the condition given in footnote 1 is 
equivalent to (e2H2Ly

2/mc2i)<K(E)i i.e., that the magnetic energy 
correction is small compared to the mean-electron energy. For 
perturbation theory to be applicable, however, it must further be 
assumed that e2H2Ly

2/mc2 be small compared to some mean-level 
spacing of the system (in the statistical sense). Since the magnetic 
field is taken as arbitrarily weak, this condition is assumed to be 
satisfied. 
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Doing the same for the even solutions, the first-order 
energy correction for both cases can be written in terms 
of a common quantum number, ny: 

E <1) = -
m2Ly

2/ 6 \ 

2±mc2 \ ir2nyV ' 
n y = l , 2 , 3 , (1.4) 

The calculation of the steady susceptibility requires 
all energy corrections to 0(H2). Accordingly, the 
second-order energy correction due to the ^-proportional 
term of (1.2) must be found. By symmetry, the only 
nonvanishing matrix elements of this term are those 
between the even and odd states: 

eH . 2 rW* 
-hkx— / dyy sm(kj,y) cos(ky'y). 

These series are evaluated in Appendix A by a sum­
mation of series method given by Morse and Feshbach.9 

The essence of the method is to consider the contour 
intergral of the summand, regarded as a function of a 
complex variable z, multiplied by a function (T cotirz) 
which has simple poles at the real integers with residues 
equal to one. The residues of the integrand at these 
latter points then give the required series, while the 
residues at the poles of the original summand can be 
evaluated by standard techniques. The sum of these 
contributions is equal to the integral over a large circle 
at infinity which can be shown to vanish, and hence, 
the required series can be evaluated. According to 
Appendix A, the result is 

mc Lu -Ly/2 

Integrating, we get 

eH 2 
Vky.ky'^ hkX 

mc Lv 

£(«') = 
1 

1— 
15 

12 (» '+*)* I 4 T 2 ( W ' + J ) 2 
(1.8) 

X 
f an[( i ,+k y ' )L y /2 '] sm[(ky-ky')Ly/2'] 

\Ky-\-Ky ) \Ky Ky ) 

With 

The energy correction term En
{2) is evaluated in an 

identical fashion. Writing this result and (1.8) in terms 
of the same index, ny, which was introduced in (1.4), the 
total electronic energy to order H2 is 

h2r/2TT\2 

ky= (2T/Ly)n, 

ky'=(2w/Ly)(n'+!z), 

(kyZkky') (Ly/2) = 7T (wd=»') db TT/2 , 

one finds, after some trigonometry, that 

s i n [ ( f t y ± V ) V 2 ] = ± ( - l ) n ± w / , 

2m\ ©••+©'"''+(zH 
e2H2L 

:2 tl_ xVJ 

+ 

24mc n_ /i /<•!, 

{P/2m)(2ir/LxYn 2> 

L TTVJJ 
eH Ly 

mc 2ir2 

X 

(1.5) 

(-D" (_!)«-*' 

C»+(W'+|)]2 Zn-(n'+i)J 
The second-order energy correction to the level n' is 
given by the standard formula8 

(ftV2») (*•/£,) V 

III. SUSCEPTIBILITY CALCULATIONS 

A. Boltzmann Statistics 

With the definitions 

¥ / 2 x \ 2 ¥ / TT \ 2 h2 /27r\2 

a*2=i8—( — ) , oy'=0—{ — ) , a* = l3—( — ) , 
2m\Lj 2m\Ly) 2m\Lj 

(1.9) 

En,(»=Z 
_ 1 £ n ( 0 ) _ £ n , ( 0 ) 

Substituting (1.3) and (1.5) into (1.6), one gets 

(1.6) 
eW2Ly2 

(2.1) 

24mci 0=: 
kT 

the classical partition 

where 

5 ( n ' ) = E -

F ,W-

1 

e2#2 L„* 
WSW), 

1 

Z= Jl eXp{—PEnxnyn,} 
TlxnyUg 

takes the form 

- i l O + C n ' + i ) ] 4 [n-(n'+i)J 

2 1 f 1 

Zn+(n'+i)J\n-(n'+i)Jl {(n'+i)2-n2 

Z=Z,W £ ex^{-a2n2-b2(\.-6/Tr2n2)} 

(1.7) X Z exp(-a/»/l ( Yll, (2.2) 

8 Due to the circumstance that the matrix elements connect 
only even and odd solutions, one need not be concerned about 
excluding the term n — n1 from the summation. 

9 P. M. Morse and H. Feschbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1, 
p. 413. 

file:///Ky-/-Ky
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where 

Z,«>= E e x p { - a , W } . (2.3) 
tt2=— 00 

The summation over nx is carried out by replacing the 
sum by an integral. Expanding this result (which is a 
function of ny

2) and the exponential appearing in the 
fly sum to order b2, which is of sufficient accuracy for 
calculating the steady susceptibility, we get 

Z=Z^~-Zz^Zx^b2 £ < r a ^ 2 

The sum over ny appearing in (2.4) then becomes, in 
expanded form, 

/7T2 7T2 \ /Tr1 '2 TT^X 

a A )+ay-H 
\12 12/ \ 2 2 / 

/ 1 1 5*\ / 6 5 \ 
+aA 1 * + - + - + M " T > (2 ' ?) 

\ 2 4 4 / VTT3'2 TT3/2/ 

where 

xlY.-LV-l/i-Jl) 

Z«» = ZX«»ZJ<»Z,«» 

, (2.4) 

the first nonvanishing contribution ^ a / . The asterisks 
(*) indicate that the respective contributions arise from 
the second and third sums in (2.6). These will be of 
importance when we later examine the consequences of 
using energies derived with use of the WKB approxima­
tion. Retaining the above contribution ~ay

x, and using 
the standard thermodynamic expression for the 
susceptibility 

I d 1 1 dZ 
X = ~(kT)—- l n Z ^ — (kT) , 

H dH H Z<°> dH 

is the field-free partition function, and Z«<°> and Zy<°> o n e finds> f r o m (2.4) and (2.1) that 
are defined in analogy with (2.3). 

The series given in (2.4) can be readily summed by 
means of the Poisson sum formula10 relating the sum of 
a series to the sum of its Fourier transforms. Specifically, 
the Poisson formula reads 

X = -
3kT 

" ^Landau > (2.8) 

£ /(2x*) = - dTf(r)e~ikr. (2.5) 

Applying (2.5) to the case f(2wk) = e~a</ik2, one can 
derive the relation 

TT1 /2 1 i r I / 2 » 

ny=»l 

2 = i £ g - (T 2 % 2 /V) ; 

2ay 2 ay ny=*i 

which applies for all R e ( a / ) > 0 . By successively multi­
plying the above result by ay

x and integrating from 0 to 
ay, one can generate the necessary series for 

where fM = eh/mc is the Bohr magneton. Thus, the 
diamagnetic susceptibility of a nondegenerate electron 
gas confined to a slab which is "small" in one dimension, 
is exactly the Landau value. 

The Landau result is also obtained for the degenerate 
case. This result has been obtained previously,5 but will 
be summarized briefly for the sake of completeness. 
Before so doing, however it is of some interest, as 
mentioned earlier, to calculate the susceptibility using 
WKB energies. In particular, it will be shown that these 
energies, which are asymtotically correct only for large 
quantum numbers, lead to a spurious result, larger than 
XLandau, and depending on the sample dimension. 

The WKB energies are readily obtained from (1.2) 
using the phase integral condition 

, e - W v » / ^ A f V 2 r e
2H2y2 

£ ( " — ) a n d E ( — )• (2m)1/2/ dy\Ey — 
eH ] w 

hkxy 
mc 

••ttyhT. ( 2 . 9 ) 

By these means, the required series, to a sufficient 
number of terms for our purposes, are 

T1'2 1 
y e—ay2ny2

== 1_ . . . 
%—i 2ay 2 

7T2 1 

ny—1 6 2 

7T4 7T2 2 

ny-i 90 6 3 

Since, by definition, the second and third terms under 
the square-root sign are very much less than the first, 
the square root may be expanded to order H2. Carrying 
out the integrations, one obtains 

e2H2L2 e2H2h2k2L2 h w 
E*i* = nv. 

(2.6) 
4:Smc2E i'2 96m2c2EW (2myf2Lv 

Solving for Ey to order H2 by iteration, one gets 

l^y 

fl2 7T2 

ny 

2m L2 

10 G. A. Korn, Mathematical Handbook (McGraw-Hill Book 
Company, Inc., New York, 1961). 

m2L2 

24mc2 

(h2/2m)k2 

{h2/2m)i^/L2)n2 
(2.10) 
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This result does not include the two "quantum" 
correction terms (—6/ir2ny

2) and (— 15/7r2%4) contained 
in the square brackets of (1.9) which, it will be recalled, 
is the exact perturbation theory result to order H2. 
Going back to (2.7) one sees that the terms marked (*), 
which arise from the above-mentioned correction terms 
[these, in turn, arise from the second and third sums of 
(2.6)], would not appear if WKB energies were used. 
Hence, the first nonvanishing term would be ay°, rather 
than ay1, with the result that 

XwKB~ ^LandauX [ 
/ T 2 

\h2/2mkT, 
)l/2 

Thus, the WKB approximation for this case gives a 
spurious size effect, depending on the ratio of the small 
dimension of the slab to the thermal deBroglie wave­
length. It is of some interest that Dingle's result (for 
cylindrical geometry) is larger than XLandau by such a 
factor ^except for the appearance of a different exponent 
( | instead of J), probably due to his different geometry, 
and the fact that kT—>£, since he is dealing with a 
Fermi gas]. 

B. Degenerate Statistics 

In this section, it is to be established that the solutions 
(1.9) lead to the Landau diamagnetism (to within a 
numerical factor) for the case of degenerate, Fermi-
Dirac statistics. The procedure is the standard one of 
calculating the susceptibility from the free energy of a 
Fermi gas: 

by means of the relation11 

X=-(l/VH)(dF/dH)s. (2.12) 

Before getting into the calculation, it is useful to 
develop a kind of general thermodynamic perturbation 
expansion for F for the case of degenerate statistics. This 
development is analogous to the thermodynamic pertur­
bation theory given by Landau and Lifshitz12 for the 
case of the classical distribution function. We write Ei 
to terms up to second order in H: 

the possibility of an E^p^O being included for the sake 
of generality. Then, performing a Taylor series expan-

11 It should be pointed out that, for fixed N, f is a function of H 
and will contain a correction term ~H2 in the presence of the 
magnetic field. However, this does not affect M (or x) due to the 
fact that (dF/d£)=Q, which is the condition determining £. Hence, 
dF/dH = (dF/dB)t+ (dF/d?) (dt/dH) = (dF/dB)r> 

12 L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 
1958), p. 93. 

sion of \n[\+e«-Ei)lkT~] about E^\ one gets 

ln[l+«(r-*')/*sp] 

= m [ l + ^ - ^ ( 0 ) > / ^ ] -
1 

1 I"!/. -

-£.(2) 
kT l+e(Ei(0)-VfkT 

XDE/1)]2, Ml 2kTLdE\l+e<E*-»""V JE^E^ 

including correction terms of order H2. Then, 

rdf(Ei)-] 
+ i E X D W , (2.13) 

* L dEi JEi=Ei^ 

where f(Ei)=(l+e(Ei-^IkT)~1 is the Fermi distribution 
function. 

Getting back to the case of slab geometry, from 
(2.13), (2.1), and (1.9), one must calculate the sum 

2\.WIC2 nxnynz [ \ 

X 

6 \ a2n2/ 15 \ ] 

, ir2ny
2/ ay

2ny
2\ ir2ny

2/\ 

1 
. ( 

l+exp[ax
2nx

2+ay
2ny

2+az
2nz

2—0f] 

We consider the evaluation of (2.14) in the limit 
T —» 0, where the Fermi function assumes a step func­
tion character. Then, since the quantity in curly 
brackets is independent of ne, the sum over nz gives just 
the range of nz: 

£ ( • • • ) - > 2| 
/ft-ofn9*-ay*nJ*\1i* 

(2.15) 
as 

Next, the sum over nx is evaluated by replacing the 
summation by an integration. This gives the following 
two integrals whose evaluation is elementary: 

LM-afnjfi/aJlv* 

LW-a^n^/aW* 

Wt-affhn/af$l* 

•UK-thM/aW* 

dn£(0!?-oy*ny*)-***n»K\U2 

T (ft-ay
2ny

2) 

dnxax
2nx

2£^-—ay
2ny

2)~ax
2nx

22112 

IT {$K-a2n2)2 

The evaluation of F then only requires carrying out the 
summation over ny: 

F=-
e2H2L2 2TT a 

l^mc2 

2TT a I / 6 \m-ayW\ 

axazny=i[\ ir2ny
2/\ 2 / 

1 / 1 15 \(K~ay
2ny

2)2] 
— ( ) , (2.16) 
a2\n2 T2ny

4/ 8 J 
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where 

- ( -
\a 

V >>u 

To evaluate these sums, we apply the Euler-
MacLaurin expansion.10 This theorem states that if f(x) 
and its derivatives exist and are continuous for m<%<n^ 
then 

E /(i) 
n n 

= / dxf(x) 
J m 

+iC/W+/W]+A[/'(«)-/'W] 

- r - C / ' " W - / , " W ] + - - - . (2.17) 

720 

Applying (2.17) to (2.16), and using the identities 
- 1 7T2 

E —=— 
" I / = 1 fly2 6 

« 1 X 4 

E —=— 
n»-l % 4 90 

« 1 

• E — 
n„=o+l fly2 

=0 1 

- E — 
ny=a+l fly* 

one again finds that the summation over ny develops as a 
series of terms of decreasing magnitude: ay

2a2, ay
2al, 

ay
2a°, • • •. Just as in the nondegenerate case, the final 

result depends crucially on a detailed cancellation of 
terms to a given order. The calculations are therefore 
given in Appendix B. Taking care to include all contri­
butions to a given order in ay

2an, one obtains: 

E 
ny 

/ l 1 1 1 1 \ 

\2 6 8 4 24/ 

/ 1 1 1 15 1 \ 

+( +—+—+—kv 
V 2 4 16 24 16/ 

+ ( )ay
ia = ( )ay

2a. 
\w2 12/ VTT2 12/ 

Using (2.12), we find that 

eV2 

x= — 127r^c2(2w)1'2 
\TT2 12/ 

: -^Landau X 
1 / 7T2\ 

(2.18) 

which establishes our result. Although this expression 
exhibits no explicit size effects in as much as it is 
independent of R and H, it does differ from Papapetrou's 
result by the numerical factor indicated. It would 
therefore imply a magnetic-field dependence in going 

from small to large systems. This is a direct consequence 
of a consistent application of the Euler-MacLaurin 
expansion as described in Appendix B, and has no 
simple physical interpretation, as far as can be seen by 
the present author. 

IV. HARMONIC WELL CASE 

In this section, we investigate the effect of the shape 
of the surface potential in the "small size" limit for a 
particularly simple case: namely, a harmonic well13 along 
the thin (y) dimension: 

V(y) = %mtfy2. (2.19) 

Instead of (1.2), the wave equations for x(y) becomes 

¥ d2X(y) 

2m dy2 

+ U m 0 2 y H 
eW2y2 eH 

2mc2 mc 
•hkxy X=EX. (2. 20) 

The "small size" approximation, which we shall use 
later, is just 

(e2H2/mc2)<^m^l2. (2.21) 

The zeroth-order (#=0) eigenstates and eigenvalues 
are simple harmonic oscillator solutions 

XN«» = $N(ay), 
(2.22) 

where $(ay) is a normalized harmonic oscillator state, 
with excitation quantum number N, and 

is a normalization constant. 
The /7-dependent energy corrections can be found by 

applying time-independent perturbation theory as be­
fore.14 It is simpler, however, to make use of the circum­
stance that the spatial dependence of the perturbation 
agrees with that of the well in order to obtain a fre­
quency change and energy shift (to order H2). The two 
procedures agree, as they must, with the result: 

e2H2 h2kx
2 e2H2 htt 

EN=EN™ + ( # + £ ) . (2.23) 
2m2c2 niti2 2mc2 m&l2 

13 The harmonic well case perhaps earliest treated by C. G. 
Darwin, Proc. Cambridge Phil. Soc. 27, 86 (1930). However, while 
Darwin obtains the Landau result in the limit 12 —> 0 (in the nota­
tion of the present paper), we obtain the same result in the 
opposite limit hcoc<£Ml appropriate to a "small" system. 

14 The calculation of the second-order energy correction is much 
simpler (than that for the case of the infinite barrier) due to the 
circumstance that, since (iV71 y | iV)-—'6jsr't AT±1J there are only a few 
number of terms to be summed. 
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The classical partition function is 

nxNnz 

The nx sum is carried out first. We have 

h2 /2TT\ 2 r e2H2 

2m 
Z,™= Z exp 

1 1 

wc2 w02_ 

e2H2 

1 + 
2mc2 rafi2 

to order IT2. 
The sum over N can be written in the form 

E exp j-/Wi e2#2 1 

2mc2 mQP-

which, aside from the H2 term, is just the geometric 
series required in the calculation of the ordinary Landau 
diamagnetism. The result is 

rpm/ e2H2 

h cschl 1 1-
L 2 \ 

1 \ 1 

2mc2 m£l2/ 

Expanding the csch and making explicit use of the 
small size condition (2.21), one obtains: 

\ csch 1 1 
2 L 

1 /3M2-
coth 

2 2mc2mQl
2 2 -

The partition function Z then becomes 

e2H2 1 
ZW = ZM-ZB«»ZXW-

2mc2 w£l2 

l r 

21 
coth-

phti 

(pm/2). 
(2.24) 

the quantity in the square brackets being the Langevin 
function, L(flMl/2). Using the fact that the level spacing 
Ml is much less than kT, one has that L(J3Ml/2) 
= |(/3M2/2). From the expression (2.17) for the sus­
ceptibility, one finally gets 

P e2h2 

X-SHO— — ^Landa 
3 4mc2 

(2.25) 

This case can be thought of as a prototype of poten­
tials which are slowly varying, in contrast to those 
whose variation with position is abrupt, the extreme 
case of which is the infinite square well considered in 
the first section. For both cases, one obtains the 
standard Landau result in the small size limit. 

V. SUMMARY 

In the present paper, the diamagnetic susceptibility 
has been calculated for a free-electron gas confined to a 

system whose characteristic dimensions are small com­
pared to the classical, mean, orbital radius of an electron 
in an applied magnetic field. The finite size of the system 
is taken into account only in that the wave function is 
required to vanish in some fashion beyond the bound­
aries of the system; no consideration has been given to 
the more difficult problem of the quantum mechanical 
scattering properties of the surface. Also, the effects of 
the periodic potential have been neglected. 

The case of slab geometry has been emphasized due 
to the relative ease with which it can be treated. For this 
case, it has been shown that the Landau result obtains 
exactly in the small size limit for nondegenerate statis­
tics, and to within a numerical factor in the degenerate 
case. In the case of Boltzmann statistics, it has demon­
strated that the use of the WKB approximation dis­
agrees with the result of perturbation theory (which is 
a bonafide approximation in the small size limit), and 
leads to an apparent enhancement of the diamagnetic 
susceptibility. As to the sensitivity of the susceptibility 
to the choice of boundary potential, no change in 
susceptibility was found for the case of a harmonic 
well using energies derived from perturbation theory. 
Although a general proof of the Landau result has not 
been provided for arbitrary geometries and surface 
potentials, it is thought that the results of the present 
paper do raise some question as to the reality of size 
effects in the steady diamagnetic susceptibility of small 
systems. 

Added Note. Recent calculations by W. V. Houston 
and E. Lane [Bull. Am. Phys. Soc. 8, 7, 528 (1963)] on 
the effect of a boundary on the diamagnetic suscepti­
bility of free electrons, lead to the conclusion that the 
Landau treatment is quite accurate for this case. 
This is in agreement with the results of the present 
paper. 
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APPENDIX A 

In this Appendix, we present the calculation of the 
sum (1.7) which arises from the second-order energy 
correction term (1.6). The basic idea of the method9 was 
discussed in the text following (1.7). 

Consider the sum 

1 

»-i [ » + {n'+l)J n2- (n'+W 

Let n—>z, {n!-\-J) —* zo, where the z's are complex 
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variables. Next, consider the contour integral 
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1 r r 1 
— / dz\ 
2iri Jc L(z+: 

1 ~] 
7T COt(7TZ) , 

.<>+So)422-Zo2J 

where the contour is over a complete, large circle at 
infinity. Let 

n— ( _ co? —1), 0, (1, oo)? we write 

1 1 

-£ 
n^[n+(ri+h)yn2-(n'+hY 

m-- r — — 1 -
L(z+zQYz2-Zo2J 

1 (n'+hY 

-Zo'J (z+Z0)
bZ—Zo 

Then, since, according to Morse and Feshbach 

lim|2/(2)|==0, 
Z—>OG 

the integral at infinity vanishes. Since w cotwz has simple 
poles at real integer values, one has that 

1 1 

"X [residues of f(z)ir cotirz 

at the poles of f(z)~\, 

the left-hand side being the required summation of the 
first two terms of (1.7). 

The residue at the simple pole z=Zo is w cotwzo/(2z0)
5 

= 0, since cot7r20
:=cot7r(^/+J) = 0. 

The residue at the fifth-order pole z=—z0 may be 
evaluated by expanding w cotwz/(z—Zo) in a Taylor 
series about z= — ZQ. Thus, 

7T COt7T2 6-5 6-4 6_i 

n—co [ » + (nf+h)J n2- (n'+i)2 

+ 2 [residues of J(Z)T cot7rz at the poles of f(z)~], 

(z+zo)b(z-zo) (z+z0)
b (Z+ZQ)* 

the residue 6_i being just 

1 J 4 /7T C0t7TSN 

Z+ZQ 

1 a4 /7T C0t7TS\ 
6 - i = ( 

2 4 d z 4 \ z - z 0 /«--*o 

or, breaking up the summation into the ranges Performing the indicated differentiation, one finds 

I f 24cot7r(-20) 24 cscV(-2 0 ) 24TT3 cot7r(-z0) csc27r(-z0) 

241 32 

+2ir' 

Zob 16 *o* Zo° 

[CSC47T ( — ZQ) + 2 CSC27T ( — Z0) COtV ( — Zo) ~] 1 
[6?r5 csc47r(—ZQ) c o t 7 r ( — Z 0 ) + 4 X 8 csc2x(—z0) cot37r(—Zo)] 

Zn2 J Zo 

Using the fact that z^~n'-\-\ is a half-integer, 6_i 
reduces to 

7T2 7T4 

6-1=- - + , 
16(^+i)4 12(*'+i)* 

and the required sum is 

1 6 ( n ' + | ) 4 12 (n '+ i ) 2 ( ^ + | ) 6 

The sum of the third term of (1.7) can be treated in an 
analogous fashion. The result is 

3 7T2 1 

which is the result quoted in (1.8). 
The series associated with the second-order energy 

correction to an even level, i.e., En
i2\ can be calculated 

in an identical fashion. The net result is given by (1.9). 

APPENDIX B 

In this Appendix, we present the Euler-MacLaurin 
expansion of the series (2.16) required for the calculation 
of the susceptibility for the case of degenerate statistics. 

The series (2.16) is rewritten in the form 

ft 6 1 i l/ft 3 \ ft 6 1 

- i l \ 2 7T2 / 2w2n2 

8(^+i)4 (n'+hY 
Combining t h e two results , we finally ob ta in L ( - - - ) 

5(»')=- + 16 (»'+*)« U(n'+W 
-* 1 f 15 1 

1-
12(w'+J)H 4x2(»'+l)2 

where 

2 8a. 

xco3r)2-203r)^v+w] 

«=03rAv2)1/2»i-

= T.St, (Bl) 
i=l 
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One calculates Now, by (2.17), one again has 

»l , - l \2 7T2 / \ 2 7T2 / 

C- / , _ o \ / . .. o \ ]T = a ~l_l f l r ^+l a 3_) ? 

9 -5 oo 1 

= s+ 2 a . ( B 2 ) % 2_ , . a + . • 
2 7T 

Next Substituting these into (B6) gives 

0f 6 r oo 1 co I"] ay
2of ay

2a2 a2a 5 
S2= - H E E — • (B3) ^ + + — V a + • • •. (B7) 

2 **U-i »„* »,=ifi n2\ 8 16 48 8TT2 

Using the fact that *n identical fashions, the remaining sums are found 
to be 

V & A / 1 5 \ 
ny==1 nV 6 4 ny-l\ T?n2/ 

and evaluating the second sum of (B3) by means of av ot 15 15 
(2.17), (B3) becomes B ' 7 4 ? V H " " ' ° ^ 

a„2a2 3 
52= + -

3 1 a / « / 15\ 
«/a oScfi+—*fcr1+ • • •. B4) S6 = — E ( V ) 
1 2TT2 2 X 2 8 4 i \ xV 

For 5,, we get = _ ^ _ + _ i _ + _ ! a ^ a . ( B 9 ) 

2 2 3 2 2 2 2 4 1 6 4 8 ^ 

<V « a/<r a/a* a /a 
S3=-— E %2= 1 • (BS) We now sum (B7) through (B9). The following nu-2 »„-i 6 4 12 merical factors are found to multiply the terms of order 

a/a3, a/a2, a/a1: 
For 64, one has 1 1 1 1 1 

v-o, / I 15 \ 
S4= E ( ) 

ay
2a?: +—=0, 

1 1 1 15 1 
ayV: + _ + _ + _ = o, 

(/3f)2 0= / 1 15 \ 2 4 16 24 16 

(fit)2 ^ / 1 15 \ ' * 2 6 8 4 24 

D2 0= / 1 15 \ 

- £ ( — — ) > (B6) 

ayw. — | 1 
7T2 7T2 12 48 8TT2 

\72~u)' 

3 3 1 1 5 
a2al: - + - +— 

where the vanishing of the difference of the sums from T f T 

1 to oo is a consequence of the equalities 15 1 15 / 1 1 
oo 1 TT2 oo 1 7T4 47T2 4 8 87T2 

E — = - , E—=—. 
ny=i n* 6 W2/=i Wy4 9Q leading to the result given by (2.18). 


